EIGEN-TEMPERATURE MODEL FOR THE ANNUAL AIR TEMPERATURE MOVEMENT EVALUATION AND FORECAST

Author:

YANG ZONG-CHANG1

Affiliation:

1. School of Information and Electronical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China

Abstract

Climate variability and its changes are issues of broader global concern. This study addresses the annual air temperature movement evaluation and forecasting based on principal component analysis (PCA). An Eigen-temperature model for describing the annual air temperature movement by employing PCA is introduced. Subspace for evaluation is generated by selecting principal orthogonal eigenvectors of covariance matrix of temperature data. The principal eigenvectors are called "Eigen-temperatures", since they are eigenvectors and each temperature movement is described by them. Each temperature movement is projected onto the subspace of eigenspace, and described by a linear combination of the Eigen-temperatures. Then, a forecast method for the temperature movement by employing the Eigen-temperatures is proposed. Forecast is implemented with polynomial curve fitting algorithm to estimate subsequent representation weights for the subsequent temperature movement with respect to the "Eigen-temperatures" generated by its previous temperature movements. The proposed Eigen-temperature model is applied to evaluation and forecasting for annual temperature movement at Tongchuan observation station of China from 1962 to 1971 and from 1994 to 2002. Experimental results agreeing well with actual observation values show workability of the proposed. Result analysis indicates its effectiveness that the proposed Eigen-temperature model is outperforming the classical AR model and the BP-ANN on the forecast tasks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3