Analytical review and study on object detection techniques in the image

Author:

Sriram K. V.1,Havaldar R. H.2

Affiliation:

1. Electronics and Communication Engineering, Angadi Institute of Technology and Management, Belagavi, Karnataka, India

2. Biomedical Engineering, KLE Dr. M.S. Sheshgiri College of Engineering and Technology, Belagavi, Karnataka, India

Abstract

Object detection is the most fundamental but challenging issues in the field of computer vision. Object detection identifies the presence of various individual objects in an image. Great success is attained for object detection/recognition problems in the controlled environment, but still, the problem remains unsolved in the uncontrolled places, particularly, when the objects are placed in arbitrary poses in an occluded and cluttered environment. In the last few years, a lots of efforts are made by researchers to resolve this issue, because of its wide range of applications in computer vision tasks, like content-enabled image retrieval, event or activity recognition, scene understanding, and so on. This review provides a detailed survey of 50 research papers presenting the object detection techniques, like machine learning-based techniques, gradient-based techniques, Fast Region-based Convolutional Neural Network (Fast R-CNN) detector, and the foreground-based techniques. Here, the machine learning-based approaches are classified into deep learning-based approaches, random forest, Support Vector Machine (SVM), and so on. Moreover, the challenges faced by the existing techniques are explained in the gaps and issues section. The analysis based on the classification, toolset, datasets utilized, published year, and the performance metrics are discussed. The future dimension of the research is based on the gaps and issues identified from the existing research works.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3