Data compensation based on the additional feature information for collaborative interactive operation with optical human motion capture system

Author:

Li Xiangyang1ORCID,Wang Rui1,Xu Zhe1,Pan Lei1,Zhang Zhili1

Affiliation:

1. Xi’an Research Institute of High Technology, 710025 Xi’an, P. R. China

Abstract

As the effective capture region of optical motion capture system is limited by quantity, installation mode, resolution and focus of infrared cameras, the reflective markers on certain body parts (such as wrists, elbows, etc.) of multi-actual trainees may be obscured when they perform the collaborative interactive operation. To address this issue, motion data compensation method based on the additional feature information provided by the electromagnetic spatial position tracking equipment is proposed in this paper. The main working principle and detailed realization process of the proposed method are introduced step by step, and the practical implementation is presented to illustrate its validity and efficiency. The results show that the missing capture data and motion information of relevant obscured markers on arms can be retrieved with the proposed method, which can avoid the simulation motions of corresponding virtual operators being interrupted and deformed during the collaborative interactive operation process performed by multi-actual trainees with optical human motion capture system in a limited capture range.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3