Multiclass recognition of Alzheimer’s and Parkinson’s disease using various machine learning techniques: A study

Author:

Balaji Chetan12,Suresh D. S.12

Affiliation:

1. Department of ECE, Channabasaveshwara Institute of Technology, Tumkur, Karnataka, India

2. Visvesvaraya Technological University, Belagavi, Karnataka, India

Abstract

The aging population is primarily affected by Alzheimer’s disease (AD) that is an incurable neurodegenerative disorder. There is a need for an automated efficient technique to diagnose Alzheimer’s in its early stage. Various techniques are used to diagnose AD. EEG and neuroimaging methodologies are widely used to highlight changes in the electrical activity of the brain signals that are helpful for early diagnosis. Parkinson’s disease (PD) is a major neurological disease that results in an average of 50,000 new clinical diagnoses worldwide every year. The voice features are majorly used as the main means to diagnose PD. The major symptoms of PD are loss of intensity, the monotony of loudness and pitch, reduction in stress, unidentified silences, and dysphonia. Even though various innovative models are proposed by explorers about Alzheimer’s and Parkinson’s classification diseases, still there is a need for efficient learning methodologies and techniques. This paper provides a review on using machine learning (ML) together with several feature extraction techniques that is helpful in the early detection of AD with Parkinson’s. The novelty and objective of this study are that the CAD technique is used to improve the accuracy of early diagnosis of AD. The proposed technique depends on the nonlinear process for data dimension reduction, feature removal, and classification using kernel-based support vector machine (SVM) classifiers. The dimension of the input space is radically diminished with kernel methods. As the learning set is labeled, it creates sense to utilize this information to make a dependable method of dropping the input space dimension. The different techniques of ML are explained under the major approaches viz. SVM, artificial neural network (ANN), deep learning (DL), and ensemble methods. A comprehensive assessment is presented at SVM, ANN, and DL approaches for better detection of Alzheimer’s with PD highlighting future insights.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecast of Students’ Mental Health Combining an Artificial Intelligence Technique and Fuzzy Inference System;2024 International Conference on Automation and Computation (AUTOCOM);2024-03-14

2. A novel hybrid model in the diagnosis and classification of Alzheimer's disease using EEG signals: Deep ensemble learning (DEL) approach;Biomedical Signal Processing and Control;2024-03

3. Diagnosis of Parkinson's Disease using Hybrid Ensemble Technique;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

4. Research on Fine Identification Method of Tunnel Geological Digital Drilling Based on Artificial Neural Network;2023 International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII);2023-06

5. Machine Learning Classification Techniques to investigate Parkinson's disease;2023 7th International Conference on Trends in Electronics and Informatics (ICOEI);2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3