IoT-based multiclass decision support system of chronic kidney disease using optimal DNN

Author:

Shanmugarajeshwari V.1,Ilayaraja M.2

Affiliation:

1. Department of Computer Applications, School of Computing, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626126, Tamil Nadu, India

2. Department of Computer Science and Information Technology, School of Computing, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India

Abstract

Current healthcare applications commonly incorporate the Internet of Things (IoT) and cloud computing ideas. IoT devices provide massive amounts of patient data in the healthcare industry. These data stored in the cloud are analyzed using mobile devices’ built-in storage and processing power. The Internet of Medical Healthcare Things (IoMHT) integrates health monitoring components including sensors and medical equipment to remotely monitor patient records in order to provide more intelligent and sophisticated healthcare services. In this research, we analyze one of the deadliest illnesses with a high fatality rate worldwide, the chronic kidney disease (CKD), to provide the finest healthcare services possible to users of e-health and m-health applications by presenting the IoTC services based on healthcare delivery system for the prediction and observation of CKD with its severity level. The suggested architecture gathers patient data from linked IoT devices and saves it in the cloud alongside real-time data, pertinent medical records that are collected from the UCI Machine Learning Repository, and relevant medical documents. We further use a Deep Neural Network (DNN) classifier to predict CKD and its severity. To boost the effectiveness of the DNN classifier, a Particle Swarm Optimization (PSO)-based feature selection technique is also applied. We compare the performance of the proposed model using different classification measures utilizing different classifiers. A Quick Flower Pollination Algorithm (QFPA)- (DNN)-based IoT and cloud-based CKD diagnosis model, is presented in this paper. The CKD diagnosis steps in the QFPA– DNN model involve data gathering, preparation, feature selection and classification stages.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3