An exponential expanding meshes sequence and finite difference method adopted for two-dimensional elliptic equations

Author:

Jha Navnit1,Kumar Neelesh1

Affiliation:

1. Faculty of Mathematics and Computer Science, Department of Mathematics, South Asian University, Chanakyapuri, New Delhi 110 021, India

Abstract

We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms. The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented, thus arriving at a compact formulation. In general, a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case. The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations. The convergence of the scheme has been established using the matrix analysis, and irreducibility is proved with the help of strongly connected characteristics of the iteration matrix. The difference scheme has been applied to test convection diffusion equation, steady state Burger’s equation, ocean model and a semi-linear elliptic equation. The computational results confirm the theoretical order and accuracy of the method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3