Data fusion and simulation-based planning and control in cyber physical system for digital assembly of aeroplane

Author:

Li Hui1,Zhang Linxuan2,Xiao Tianyuan3,Dong Jietao1

Affiliation:

1. State CIMS Engineering Research Center at Tsinghua University, Main Building Room 604, Beijing 100084, P. R. China

2. State CIMS Engineering Research Center at Tsinghua University, Main Building Room 601, Beijing 100084, P. R. China

3. State CIMS Engineering Research Center at Tsinghua University, Main Building Room 619, Beijing 100084, P. R. China

Abstract

This paper introduces a CPS application for intelligent aeroplane assembly. At first, the CPS structure is presented, which acquires the characteristics of general CPS and enables "simulation-based planning and control" to achieve high level intelligent assembly. Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling, respectively. The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation, and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration, it can also directly link to data, and the error is smaller. This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control. A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness. At the same time, an outer collaborative trajectory planning is also designed. All the experiment results show the feasibility of above proposed methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber Physical System (CPS)-Based Industry 4.0: A Survey;Journal of Industrial Integration and Management;2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3