IMPLEMENTING ARBITRARILY HIGH-ORDER SYMPLECTIC METHODS VIA KRYLOV DEFERRED CORRECTION TECHNIQUE

Author:

FENG QUANDONG12,HUANG JINGFANG3,NIE NINGMING2,SHANG ZAIJIU4,TANG YIFA2

Affiliation:

1. College of Science, Beijing Forestry University, Beijing 100083, China

2. LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

3. Department of Mathematics, University of North Carolina at Chapel Hill, Phillips Hall, CB #3250, NC 27599, USA

4. Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Abstract

In this paper, an efficient numerical procedure is presented to implement the Gaussian Runge–Kutta (GRK) methods (also called Gauss methods). The GRK technique first discretizes each marching step of the initial value problem using collocation formulations based on Gaussian quadrature. As is well known, it preserves the geometric structures of Hamiltonian systems. Existing analysis shows that the GRK discretization with s nodes is of order 2s, A-stable, B-stable, symplectic and symmetric, and hence "optimal" for solving initial value problems of general ordinary differential equations (ODEs). However, as the unknowns at different collocation points are coupled in the discretized system, direct solution of the resulting algebraic equations is in general inefficient. Instead, we use the Krylov deferred correction (KDC) method in which the spectral deferred correction (SDC) scheme is applied as a preconditioner to decouple the original system, and the resulting preconditioned nonlinear system is solved efficiently using Newton–Krylov schemes such as Newton–GMRES method. The KDC accelerated GRK methods have been applied to several Hamiltonian systems and preliminary numerical results are presented to show the accuracy, stability, and efficiency features of these methods for different accuracy requirements in short- and long-time simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3