Application of AI techniques for modeling the performance measures in milling of 7075-T6 hybrid aluminum metal matrix composites

Author:

Mohanraj T.1

Affiliation:

1. Department of Mechanical Engineering College, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

Abstract

The prediction of performance measures is an essential one for manufacturers to increase the service life. This paper deals with the application of Artificial Intelligence (AI) to predict the performance measures like surface roughness, material removal rate, and flank wear during the milling process from the experimental data. The milling experiments were conducted in wet conditions based on the Response Surface Methodology (RSM) design of experiments. The spindle speed, feed rate, and axial depth of cut were considered as process parameters. The experimental data were used to develop the regression model, Mamdani fuzzy inference system, Backpropagation Neural Network (BPNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) model. The output of regression, fuzzy, neural network, and ANFIS model was compared with the experimental data, and predicted results were found to be in good conformity with the measured data. The prediction capability of the quadratic and Artificial Neural Network (ANN) model was very close to experimentally measured values and the quadratic model had an accuracy of 97.89% for surface roughness, 98.38% for material removal rate (MRR), and 95.72% for flank wear.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3