A multi-sensor fusion method for static Chinese sign language recognition using DE–XGBoost

Author:

Lu Xiaoyang1,Liu Yanjun2

Affiliation:

1. Faculty of Engineering and Information Technology, University of Technology Sydney Ultimo, Sydney, NSW 2007, Australia

2. Institute of Hydropower and Water Conservancy, Engineering Huadong Engineering Corporation Limited, Hangzhou, Zhejiang 311122, P. R. China

Abstract

Static Chinese Sign Language Recognition (SCSLR) is an important field of research in human–computer interaction and assistive technology. Traditional SCSLR methods usually rely on computer vison sensors, which are susceptible to effects such as hand shapes, lighting conditions, and occlusions, resulting in low recognition accuracy. Additionally, sensor-based SCSLR methods cannot achieve high recognition accuracy due to limited hand gesture information. In this paper, we propose a multi-sensor fusion method, using a DE–XGBoost model, to fuse the information of hand gesture and finger curvature to achieve the SCSLR, which can overcome the recognition error problems caused by insufficient sign language information. In addition, we design and implement a prototype system, which consists of a smartphone and a smart glove, to evaluate our proposed method in comparison with support vector machine (SVM), XGBoost, gcForest, and artificial neural network (ANN). Experimental results show that our proposed method achieves a better performance in terms of accuracy, robustness, and real-time processing.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Instance type completion in equipment knowledge graph based on translation model;International Journal of Modeling, Simulation, and Scientific Computing;2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3