Stability control of a vehicle with tire blowout based on active steering and differential braking

Author:

Liguo Zang12,Yibin Wu3,Xingyu Wang2,Zhi Wang2,Yaowei Li2

Affiliation:

1. Key Laboratory of Transportation Industry for Transport Vehicle Detection, Diagnosis and Maintenance Technology, Jinan 250357, P. R. China

2. School of Automobile and Rail Transportation, Nanjing Institute of Technology, Nanjing 211167, P. R. China

3. School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, P. R. China

Abstract

The vehicle with tire blowout will have dangerous working conditions such as yaw and tail flick, which will seriously endanger the safety of driving. A tire blowout model was established based on the UniTire model and the change of tire blowout mechanical characteristics. A Carsim/Simulink joint simulation platform was built to study the dynamic response of the vehicle after the front wheel tire blowout under curve driving. A combined control strategy of outer-loop trajectory control and inner-loop differential braking control based on sliding mode fuzzy control algorithms and fuzzy PID control algorithms was proposed to ensure that the vehicle can still follow the original trajectory stably after tire blowout. The results show that the tire blowout of the front wheel on the same side as the turning direction has a great influence on the instability and yaw of the vehicle, and the designed control strategy can effectively control the running track of the vehicle with tire blowout and the vehicle stability.

Funder

National Natural Science Foundation of China

Qing Lan Project in Jiangsu Universities

Nanjing Institute of Technology

Open Research Fund Projects of Key Laboratory of Transportation Industry

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3