Experiment and analysis on chaotic characteristics vibration mill with variable rotational speed

Author:

Yang Xiaolan1,Gao Yuan2,Jia Minping2

Affiliation:

1. College of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China

2. College of Mechanical Engineering, Southeast University, Nanjing 211189, P. R. China

Abstract

In an attempt to improve the current low efficiency and high consumption situation of vibration mills, this paper analyses the chaotic motion characteristics of the system and the movement of vibration mill. The complex stiffness-dispersion coupling of the system is also studied, so as to investigate the effect of the system’s chaotic motion characteristics on the efficiency improvement and energy consumption reduction. Based on the ADAMS software, this paper establishes a simplified vibration mill mechanical model, analyzes the singularity and stability of the system, and determines the critical speed at which the vibration motor becomes chaotic according to the bifurcation diagram. Then the chaotic state of the grinding machine with sinusoidal variation in its motor speed is studied based on the Poincaré principle, singular attractor and maximum Lyapunov exponent. Lastly, a 200[Formula: see text]h vibration test on diamond powder with an average particle size of 10 [Formula: see text]m was carried out. Test results under the two operating conditions of variable and constant speeds are compared and analyzed. Our results show that with variable speed the vibration mill achieved higher grinding efficiency but smaller particle grain size. The research elaborated in this paper provides a valuable reference for the engineering application of the chaotic characteristics of vibration mill.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3