Affiliation:
1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Boulevard W. Montreal, Quebec H3G 1M8 Canada
Abstract
The vast majority of today’s engineering systems possess operational constraints and have multiple inputs and outputs. This classifies them as Multi-Input Multi-Output (MIMO) systems. This paper develops a novel observer-based fault diagnosis scheme with the capability of simultaneous state and actuator fault estimation for Linear Time-Invariant (LTI) MIMO systems, which is then integrated with Model Predictive Control (MPC) method for achieving fault-tolerant control. The application within this study is chosen to be the longitudinal flight control of a fixed-wing Unmanned Aerial Vehicle (UAV). The observer-based method is combined with two MPC schemes to detect and compensate randomly occurring actuator faults in real time. The faults are modeled as a Loss Of Effectiveness (LOE). For the first (efficient) MPC method, a simple reconfiguration can be performed in the event of faults, as it is based on an absolute input formulation. However, as the second (integral-action) MPC is based on an incremental input formulation, reconfiguration is not required, since this algorithm has a degree of implicit fault tolerance. Numerical simulations demonstrate the effectiveness of the proposed approach for both MPC schemes.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献