Affiliation:
1. Center for Autonomous & Robotic Systems, University of Delaware, Newark, DE, 19716, USA
Abstract
Co-design and integration of vehicle navigation and control and state estimation is key for enabling field deployment of mobile robots in GPS-denied cluttered environments, and sensor calibration is critical for successful operation of both subsystems. This paper demonstrates the potential of this co-design approach with field tests of the integration of a reactive receding horizon-based motion planner and controller with an inertial aided multi-sensor calibration scheme. The reported method provides accurate calibration parameters that improve the performance of the state estimator, and enable the motion controller to generate smooth and continuous minimal-jerk trajectories based on local LiDAR data. Numerical simulations in Unity, and real-world experimental results from the field corroborate the claims of efficacy for the reported autonomous navigation computational pipeline.
Funder
U.S. Army Combat Capabilities Development Command - Army Research Lab
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献