Eigenvectors of a matrix under random perturbation

Author:

Benaych-Georges Florent1,Enriquez Nathanaël2,Michaïl Alkéos3

Affiliation:

1. MAP5, Université Paris Descartes, 45, Rue des Saints-Pères, 75270 Paris, Cedex 06, France

2. MAP5, Laboratoire Mathématiques d’Orsay, Université Paris-Sud, 91405 Orsay, France

3. Université Paris Descartes, 45, Rue des Saints-Pères, 75270 Paris, Cedex 06, France

Abstract

In this text, based on elementary computations, we provide a perturbative expansion of the coordinates of the eigenvectors of a Hermitian matrix of large size perturbed by a random matrix with small operator norm whose entries in the eigenvector basis of the first one are independent, centered, with a variance profile. This is done through a perturbative expansion of spectral measures associated to the state defined by a given vector.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Perturbation Bounds for Invariant, Deflating and Singular Subspaces;Axioms;2024-09-02

2. Probabilistic perturbation bounds of matrix decompositions;Numerical Linear Algebra with Applications;2024-08-28

3. Optimal Subspace Perturbation Bounds under Gaussian Noise;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

4. Matrices with Gaussian Noise: Optimal Estimates for Singular Subspace Perturbation;IEEE Transactions on Information Theory;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3