Hurwitz and the origins of random matrix theory in mathematics

Author:

Diaconis Persi1,Forrester Peter J.2ORCID

Affiliation:

1. Department of Mathematics and Statistics, Stanford University, 50 Serra Mall, Bldg. 380, Stanford, CA 94305-2125, USA

2. Department of Mathematics and Statistics, ARC Centre of Excellence for Mathematical & Statistical Frontiers, The University of Melbourne, Victoria 3010, Australia

Abstract

The purpose of this paper is to put forward the claim that Hurwitz’s paper [Über die Erzeugung der invarianten durch integration, Nachr. Ges. Wiss. Göttingen 1897 (1897) 71–90.] should be regarded as the origin of random matrix theory in mathematics. Here Hurwitz introduced and developed the notion of an invariant measure for the matrix groups [Formula: see text] and [Formula: see text]. He also specified a calculus from which the explicit form of these measures could be computed in terms of an appropriate parametrization — Hurwitz chose to use Euler angles. This enabled him to define and compute invariant group integrals over [Formula: see text] and [Formula: see text]. His main result can be interpreted probabilistically: the Euler angles of a uniformly distributed matrix are independent with beta distributions (and conversely). We use this interpretation to give some new probability results. How Hurwitz’s ideas and methods show themselves in the subsequent work of Weyl, Dyson and others on foundational studies in random matrix theory is detailed.

Funder

Australian Research Council

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eigenvalue spectra of finely structured random matrices;Physical Review E;2024-06-03

2. Exact first moments of the RV coefficient by invariant orthogonal integration;Journal of Multivariate Analysis;2023-11

3. Rank 1 perturbations in random matrix theory — A review of exact results;Random Matrices: Theory and Applications;2023-08-19

4. Fermionic Correlation Functions from Randomized Measurements in Programmable Atomic Quantum Devices;Physical Review Letters;2023-08-07

5. Spherical Induced Ensembles with Symplectic Symmetry;Symmetry, Integrability and Geometry: Methods and Applications;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3