Affiliation:
1. Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202, USA
Abstract
In the present paper we obtain the large N asymptotics of the partition function ZN of the six-vertex model with domain wall boundary conditions on the critical line between the disordered and antiferroelectric phases. Using the weights a = 1 - x, b = 1 + x, c = 2, |x| < 1, we prove that, as N → ∞, ZN = CFN2N1/12(1 + O(N-1)), where F is given by an explicit expression in x and the x-dependency in C is determined. This result reproduces and improves the one given in the physics literature by Bogoliubov, Kitaev and Zvonarev [Boundary polarization in the six-vertex model, Phys. Rev. E65 (2002) 026126]. Furthermore, we prove that the free energy exhibits an infinite-order phase transition between the disordered and antiferroelectric phases. Our proofs are based on the large N asymptotics for the underlying orthogonal polynomials which involve a non-analytical weight function, the Deift–Zhou non-linear steepest descent method to the corresponding Riemann–Hilbert problem, and the Toda equation for the tau-function.
Publisher
World Scientific Pub Co Pte Lt
Subject
Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献