Passing through a stack k times

Author:

Mansour Toufik1,Skogman Howard2,Smith Rebecca2

Affiliation:

1. Department of Mathematics, University of Haifa, 3498838 Haifa, Israel

2. Department of Mathematics, SUNY Brockport, Brockport, New York, USA

Abstract

We consider the number of passes a permutation needs to take through a stack if we only pop the appropriate output values and start over with the remaining entries in their original order. We define a permutation [Formula: see text] to be [Formula: see text]-pass sortable if [Formula: see text] is sortable using [Formula: see text] passes through the stack. Permutations that are [Formula: see text]-pass sortable are simply the stack sortable permutations as defined by Knuth. We define the permutation class of [Formula: see text]-pass sortable permutations in terms of their basis. We also show all [Formula: see text]-pass sortable classes have finite bases by giving bounds on the length of a basis element of the permutation class for any positive integer [Formula: see text]. Finally, we define the notion of tier of a permutation [Formula: see text] to be the minimum number of passes after the first pass required to sort [Formula: see text]. We then give a bijection between the class of permutations of tier [Formula: see text] and a collection of integer sequences studied by Parker [The combinatorics of functional composition and inversion, PhD thesis, Brandeis University (1993)]. This gives an exact enumeration of tier [Formula: see text] permutations of a given length and thus an exact enumeration for the class of [Formula: see text]-pass sortable permutations. Finally, we give a new derivation for the generating function in [S. Parker, The combinatorics of functional composition and inversion, PhD thesis, Brandeis University (1993)] and an explicit formula for the coefficients.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passing through a stackktimes with reversals;European Journal of Combinatorics;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3