Total vertex-edge domination in graphs: Complexity and algorithms

Author:

Singhwal Nitisha1,Reddy Palagiri Venkata Subba1

Affiliation:

1. Department of Computer Science and Engineering, National Institute of Technology, Warangal 506004, India

Abstract

Let [Formula: see text] be a simple, undirected and connected graph. A vertex [Formula: see text] of a simple, undirected graph [Formula: see text]-dominates all edges incident to at least one vertex in its closed neighborhood [Formula: see text]. A set [Formula: see text] of vertices is a vertex-edge dominating set of [Formula: see text], if every edge of graph [Formula: see text] is [Formula: see text]-dominated by some vertex of [Formula: see text]. A vertex-edge dominating set [Formula: see text] of [Formula: see text] is called a total vertex-edge dominating set if the induced subgraph [Formula: see text] has no isolated vertices. The total vertex-edge domination number [Formula: see text] is the minimum cardinality of a total vertex-edge dominating set of [Formula: see text]. In this paper, we prove that the decision problem corresponding to [Formula: see text] is NP-complete for chordal graphs, star convex bipartite graphs, comb convex bipartite graphs and planar graphs. The problem of determining [Formula: see text] of a graph [Formula: see text] is called the minimum total vertex-edge domination problem (MTVEDP). We prove that MTVEDP is linear time solvable for chain graphs and threshold graphs. We also show that MTVEDP can be approximated within approximation ratio of [Formula: see text]. It is shown that the domination and total vertex-edge domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MTVEDP is presented.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On total isolation in graphs;Aequationes mathematicae;2024-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3