OPTIMIZING DATA THROUGHPUT IN CLIENT/SERVER SYSTEMS BY KEEPING QUEUE SIZES BALANCED

Author:

KRANAKIS E.1,KRIZANC D.2,LAMBADARIS I.3,NARAYANAN L.4,OPATRNY J.4

Affiliation:

1. School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada

2. Department of Mathematics and Computer Science, Wesleyan University, Middletown CT 06459, USA

3. Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, K1S 5B6, Canada

4. Department of Computer Science, Concordia University, Montréal, QC, H3G 1M8, Canada

Abstract

Consider a synchronous system of clients and servers whereby client requests may be satisfied by any one of the servers the clients are assigned to and where the association between clients and servers is determined by an arbitrary but predefined apportionment of the set of servers to clients and of clients to servers. A client can get the required service from any of the servers it is assigned to and at each time step all clients make a request to the servers which then provide the service according to requests. Since clients can make requests simultaneously, if there is no coordination in the "client-to-server" assignment process some clients may have to wait longer if they are assigned simultaneously to a single server when overall performance could improve had they been assigned to separate available servers. Therefore a principal approach to optimizing throughput when assigning client requests to supporting servers, is to keep the client queue sizes well balanced so as to prevent servers from having to remain idle while other servers are being overused. There are several potential examples of such systems involving data gathering and forwarding among sensors in a sensor network or when the servers are base-stations and the clients may be either rotating satellites or other wireless devices, for example. In this paper we consider the problem of finding an assignment of clients to servers that results in all clients receiving a packet while optimally balancing the sizes of remaining queues at the clients. We give a polynomial time algorithm for solving this problem which requires O((m + n)3n) arithmetic operations, where m is the number of client queues and n is the number of servers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3