On metric dimension of nil-graph of ideals of commutative rings

Author:

Selvakumar K.1ORCID,Petchiammal N.1

Affiliation:

1. Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamilnadu, India

Abstract

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the ideal of all nilpotent elements of [Formula: see text]. Let [Formula: see text] be a nontrivial ideal of [Formula: see text] and there exists a nontrivial ideal [Formula: see text] such that [Formula: see text] The nil-graph of ideals of [Formula: see text] is defined as the graph [Formula: see text] whose vertex set is the set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. A subset of vertices [Formula: see text] resolves a graph [Formula: see text] and [Formula: see text] is a resolving set of [Formula: see text] if every vertex is uniquely determined by its vector of distances to the vertices of [Formula: see text] In particular, for an ordered subset [Formula: see text] of vertices in a connected graph [Formula: see text] and a vertex [Formula: see text] of [Formula: see text] the metric representation of [Formula: see text] with respect to [Formula: see text] is the [Formula: see text]-vector [Formula: see text] The set [Formula: see text] is a resolving set for [Formula: see text] if [Formula: see text] implies that [Formula: see text] for all pair of vertices, [Formula: see text] A resolving set [Formula: see text] of minimum cardinality is the metric basis for [Formula: see text] and the number of elements in the resolving set of minimum cardinality is the metric dimension of [Formula: see text] If [Formula: see text] for every pair [Formula: see text] of adjacent vertices of [Formula: see text] then [Formula: see text] is called a local metric set of [Formula: see text]. The minimum [Formula: see text] for which [Formula: see text] has a local metric [Formula: see text]-set is the local metric dimension of [Formula: see text] which is denoted by [Formula: see text]. In this paper, we determine metric dimension and local metric dimension of nil-graph of ideals of commutative rings.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3