A new upper bound for sorting permutations with prefix transpositions

Author:

Nair Pramod P.1,Sundaravaradhan Rajan1,Chitturi Bhadrachalam2ORCID

Affiliation:

1. Department of Mathematics, Amrita Vishwa Vidyapeetham, Amritapuri, India

2. Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA

Abstract

Permutations are discrete structures that naturally model a genome where every gene occurs exactly once. In a permutation over the given alphabet [Formula: see text], each symbol of [Formula: see text] appears exactly once. A transposition operation on a given permutation [Formula: see text] exchanges two adjacent sublists of [Formula: see text]. If one of these sublists is restricted to be a prefix then one obtains a prefix transposition. The symmetric group of permutations with [Formula: see text] symbols derived from the alphabet [Formula: see text] is denoted by [Formula: see text]. The symmetric prefix transposition distance between [Formula: see text] and [Formula: see text] is the minimum number of prefix transpositions that are needed to transform [Formula: see text] into [Formula: see text]. It is known that transforming an arbitrary [Formula: see text] into an arbitrary [Formula: see text] is equivalent to sorting some [Formula: see text]. Thus, upper bound for transforming any [Formula: see text] into any [Formula: see text] with prefix transpositions is simply the upper bound to sort any permutation [Formula: see text]. The current upper bound is [Formula: see text] for prefix transposition distance over [Formula: see text]. In this paper, we improve the same to [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super oriented cycles in permutations;Computers in Biology and Medicine;2023-10

2. Improved upper bound for sorting permutations by prefix transpositions;Theoretical Computer Science;2021-12

3. Approximation algorithms for sorting permutations by extreme block-interchanges;Theoretical Computer Science;2021-11

4. Generation of the symmetric group Sn2;Discrete Mathematics, Algorithms and Applications;2021-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3