Affiliation:
1. Computer Science and Application Group, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
Abstract
A subset L ⊆ V of a graph G = (V, E) is called a connected liar's dominating set of G if (i) for all v ∈ V, |NG[v] ∩ L| ≥ 2, (ii) for every pair u, v ∈ V of distinct vertices, |(NG[u]∪NG[v])∩L| ≥ 3, and (iii) the induced subgraph of G on L is connected. In this paper, we initiate the algorithmic study of minimum connected liar's domination problem by showing that the corresponding decision version of the problem is NP-complete for general graph. Next we study this problem in subclasses of chordal graphs where we strengthen the NP-completeness of this problem for undirected path graph and prove that this problem is linearly solvable for block graphs. Finally, we propose an approximation algorithm for minimum connected liar's domination problem and investigate its hardness of approximation in general graphs.
Publisher
World Scientific Pub Co Pte Lt
Subject
Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献