On computing secure domination of trees

Author:

Poureidi Abolfazl1ORCID

Affiliation:

1. Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

Abstract

Let [Formula: see text] be a graph. A subset [Formula: see text] is a dominating set of [Formula: see text] if for each [Formula: see text] there is a vertex [Formula: see text] adjacent to [Formula: see text]. A dominating set [Formula: see text] of [Formula: see text] is a secure dominating set of [Formula: see text] if for each [Formula: see text] there is a vertex [Formula: see text] adjacent to [Formula: see text] such that [Formula: see text] is also a dominating set of [Formula: see text]. The minimum cardinality of a secure dominating set of [Formula: see text] is called the secure domination number of [Formula: see text]. Burger et al. [A linear algorithm for secure domination in trees, Discrete Appl. Math. 171 (2014) 15–27] proposed a nontrivial algorithm for computing a minimum secure dominating set of a given tree in linear time and space. In this paper, we give a dynamic programming algorithm to compute the secure domination number of a given tree [Formula: see text] in [Formula: see text] time and space and then using a backtracking search algorithm we can find a minimum secure dominating set of [Formula: see text] in [Formula: see text] time and space that its implementation is much simpler than the implementation of the algorithm proposed by Burger et al.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PTASs for secure dominating set in planar graphs and growth-bounded graphs;Discrete Applied Mathematics;2024-11

2. On the complexity of co-secure dominating set problem;Information Processing Letters;2024-03

3. Fair detour domination of graphs;Discrete Mathematics, Algorithms and Applications;2023-10-17

4. Complexity Results on Cosecure Domination in Graphs;Algorithms and Discrete Applied Mathematics;2023

5. Complexity Results on Cosecure Domination in Graphs;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3