Affiliation:
1. Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
Abstract
Let [Formula: see text] be a graph. A subset [Formula: see text] is a dominating set of [Formula: see text] if for each [Formula: see text] there is a vertex [Formula: see text] adjacent to [Formula: see text]. A dominating set [Formula: see text] of [Formula: see text] is a secure dominating set of [Formula: see text] if for each [Formula: see text] there is a vertex [Formula: see text] adjacent to [Formula: see text] such that [Formula: see text] is also a dominating set of [Formula: see text]. The minimum cardinality of a secure dominating set of [Formula: see text] is called the secure domination number of [Formula: see text]. Burger et al. [A linear algorithm for secure domination in trees, Discrete Appl. Math. 171 (2014) 15–27] proposed a nontrivial algorithm for computing a minimum secure dominating set of a given tree in linear time and space. In this paper, we give a dynamic programming algorithm to compute the secure domination number of a given tree [Formula: see text] in [Formula: see text] time and space and then using a backtracking search algorithm we can find a minimum secure dominating set of [Formula: see text] in [Formula: see text] time and space that its implementation is much simpler than the implementation of the algorithm proposed by Burger et al.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Discrete Mathematics and Combinatorics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献