The complexity of determining the vertex-rainbow index of graphs

Author:

Mao Yaping12,Shi Yongtang12

Affiliation:

1. Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, P. R. China

2. Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, P. R. China

Abstract

The concept of the [Formula: see text]-rainbow index of a network comes from the communication of information between agencies of government, which was introduced by Chartrand et al. in 2010. As a natural counterpart of the [Formula: see text]-rainbow index, the concept of [Formula: see text]-vertex-rainbow index was also introduced. For a graph [Formula: see text] and a set [Formula: see text] of at least two vertices, an [Formula: see text]-Steiner tree or a Steiner tree connecting [Formula: see text] (or simply, an [Formula: see text]-tree) is such a subgraph [Formula: see text] of [Formula: see text] that is a tree with [Formula: see text]. For [Formula: see text] and [Formula: see text], an [Formula: see text]-Steiner tree [Formula: see text] is said to be a vertex-rainbow [Formula: see text]-tree if the vertices of [Formula: see text] have distinct colors. For a fixed integer [Formula: see text] with [Formula: see text], the vertex-coloring [Formula: see text] of [Formula: see text] is called a [Formula: see text]-vertex-rainbow coloring if for every [Formula: see text]-subset [Formula: see text] of [Formula: see text] there exists a vertex-rainbow [Formula: see text]-tree. In this case, [Formula: see text] is called vertex-rainbow [Formula: see text]-tree-connected. The minimum number of colors that are needed in a [Formula: see text]-vertex-rainbow coloring of [Formula: see text] is called the [Formula: see text]-vertex-rainbow index of [Formula: see text], denoted by [Formula: see text]. In this paper, we study the complexity of determining the [Formula: see text]-vertex-rainbow index of a graph and prove that computing [Formula: see text] is [Formula: see text]-Hard. Moreover, we show that it is [Formula: see text]-Complete to decide whether [Formula: see text]. We also prove that the following problem is [Formula: see text]-Complete: Given a vertex-colored graph [Formula: see text], check whether the given coloring makes [Formula: see text] vertex-rainbow [Formula: see text]-tree-connected.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on rainbow (vertex-)index of graphs;Discrete Applied Mathematics;2024-05

2. Graphs with small total rainbow connection number;Frontiers of Mathematics in China;2017-06-08

3. The vertex-rainbow index of a graph;Discussiones Mathematicae Graph Theory;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3