Constacyclic additive codes over finite fields

Author:

Kaur Taranjot1,Sharma Anuradha2

Affiliation:

1. Department of Mathematics, IIT Delhi, India

2. Department of Mathematics, IIIT-Delhi, India

Abstract

Let [Formula: see text] denote the finite field of order [Formula: see text] and characteristic [Formula: see text] [Formula: see text] be a positive integer coprime to [Formula: see text] and let [Formula: see text] be an integer. In this paper, we develop the theory of constacyclic additive codes of length [Formula: see text] over [Formula: see text] and provide a canonical form decomposition for these codes. By placing ordinary, Hermitian and ∗ trace bilinear forms on [Formula: see text] we determine some isodual constacyclic additive codes of length [Formula: see text] over [Formula: see text] Moreover, we explicitly determine basis sets of all self-orthogonal, self-dual and complementary-dual negacyclic additive codes of length [Formula: see text] over [Formula: see text] when [Formula: see text] and enumerate these three class of codes for any integer [Formula: see text] with respect to the aforementioned trace bilinear forms on [Formula: see text]

Funder

National Board for Higher Mathematics

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enumeration formulae for self-orthogonal, self-dual and complementary-dual additive cyclic codes over finite commutative chain rings;Cryptography and Communications;2024-07-10

2. Multi-twisted additive self-orthogonal and ACD codes are asymptotically good;Finite Fields and Their Applications;2024-01

3. Multi-twisted additive codes over finite fields are asymptotically good;Cryptography and Communications;2022-05-19

4. Multi-twisted Additive Codes with Complementary Duals over Finite Fields;Problems of Information Transmission;2022-04

5. Multi-twisted additive codes over finite fields;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2021-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3