On the skew Laplacian spectral radius of a digraph

Author:

Chat Bilal A.1,Ganie Hilal A.2,Bhat Altaf A.1,Bhat Mohd Y.1,Lone Mehraj A.3

Affiliation:

1. Department of Mathematical Sciences, Islamic University of Science and Technology, Awantipora Pulwama, India

2. Department of School Education, JK Government, Kashmir, India

3. Department of Mathematics, National Institute of Technology, Srinagar, India

Abstract

Let [Formula: see text] be an orientation of a simple graph [Formula: see text] with [Formula: see text] vertices and [Formula: see text] edges. The skew Laplacian matrix [Formula: see text] of the digraph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the imaginary unit, [Formula: see text] is the diagonal matrix with oriented degrees [Formula: see text] as diagonal entries and [Formula: see text] is the skew matrix of the digraph [Formula: see text]. The largest eigenvalue of the matrix [Formula: see text] is called skew Laplacian spectral radius of the digraph [Formula: see text]. In this paper, we study the skew Laplacian spectral radius of the digraph [Formula: see text]. We obtain some sharp lower and upper bounds for the skew Laplacian spectral radius of a digraph [Formula: see text], in terms of different structural parameters of the digraph and the underlying graph. We characterize the extremal digraphs attaining these bounds in some cases. Further, we end the paper with some problems for the future research in this direction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the skew eigenvalues of joined union of oriented graphs and applications;Quaestiones Mathematicae;2024-05-15

2. Hermitian skew Laplacian matrix of oriented graphs;Discrete Mathematics, Algorithms and Applications;2024-03-27

3. On the coefficients of skew Laplacian characteristic polynomial of digraphs;Discrete Mathematics, Algorithms and Applications;2022-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3