Unstable graphs and packing into fifth power

Author:

Alzohairi Mohammad1,Louleb Tarak2,Sayar Mohamed Y.2

Affiliation:

1. Department of Mathematics, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Mathematics, Faculty of Science of Sfax, Soukra Road km 4, P. O. Box 802, 3018 Sfax, Tunisia

Abstract

In a graph [Formula: see text], a subset [Formula: see text] of the vertex set [Formula: see text] is a module (or interval, clan) of [Formula: see text] if every vertex outside [Formula: see text] is adjacent to all or none of [Formula: see text]. The empty set, the singleton sets, and the full set of vertices are trivial modules. The graph [Formula: see text] is indecomposable (or prime) if all its modules are trivial. If [Formula: see text] is indecomposable, we say that an edge [Formula: see text] of [Formula: see text] is a removable edge if [Formula: see text] is indecomposable (here [Formula: see text]). The graph [Formula: see text] is said to be unstable if it has no removable edges. For a positive integer [Formula: see text], the [Formula: see text]th power [Formula: see text] of a graph [Formula: see text] is the graph obtained from [Formula: see text] by adding an edge between all pairs of vertices of [Formula: see text] with distance at most [Formula: see text]. A graph [Formula: see text] of order [Formula: see text] (i.e., [Formula: see text]) is said to be [Formula: see text]-placeable into [Formula: see text], if [Formula: see text] contains [Formula: see text] edge-disjoint copies of [Formula: see text]. In this paper, we answer a question, suggested by Boudabbous in a personal communication, concerning unstable graphs and packing into their fifth power as follows: First, we give a characterization of the unstable graphs which is deduced from the results given by Ehrenfeucht, Harju and Rozenberg (the theory of [Formula: see text]-structures: a framework for decomposition and transformation of graphs). Second, we prove that every unstable graph [Formula: see text] is [Formula: see text]-placeable into [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3