DISTANCE PRESERVING SUBTREES IN MINIMUM AVERAGE DISTANCE SPANNING TREES

Author:

LYAUDET LAURENT1,YONTA PAULIN MELATAGIA23,TCHUENTE MAURICE123,NDOUNDAM RENÉ2

Affiliation:

1. Ecole Normale Supérieure de Lyon, Institut des Systèmes Complexes, 46 Allée d'Italie, 69364 Lyon cedex 07, France

2. Université de Yaoundé I, UMI 209, UMMISCO, Faculté des Sciences, Département d'Informatique, B. P. 812 Yaoundé, Cameroun

3. LIRIMA, Equipe IDASCO, Université de Yaoundé 1, B. P. 337 Yaoundé, Cameroun

Abstract

Given an undirected graph G = (V, E) with n vertices and a positive length w(e) on each edge e ∈ E, we consider Minimum Average Distance (MAD) spanning trees i.e., trees that minimize the path length summed over all pairs of vertices. One of the first results on this problem is due to Wong who showed in 1980 that a Distance Preserving (DP) spanning tree rooted at the median of G is a 2-approximate solution. On the other hand, Dankelmann has exhibited in 2000 a class of graphs where no MAD spanning tree is distance preserving from a vertex. We establish here a new relation between MAD and DP trees in the particular case where the lengths are integers. We show that in a MAD spanning tree of G, each subtree H′ = (V′, E′) consisting of a vertex [Formula: see text] and the union of branches of [Formula: see text] that are each of size less than or equal to [Formula: see text], where w+ is the maximum edge-length in G, is a distance preserving spanning tree of the subgraph of G induced by V′.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3