k-Submodular maximization with two kinds of constraints

Author:

Shi Ganquan1,Gu Shuyang2ORCID,Wu Weili3

Affiliation:

1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China

2. Department of Computer Information Systems, Texas A & M University-Central Texas, Killeen, TX 76549, USA

3. Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

[Formula: see text]-submodular maximization is a generalization of submodular maximization, which requires us to select [Formula: see text] disjoint subsets instead of one subset. Attracted by practical values and applications, we consider [Formula: see text]-submodular maximization with two kinds of constraints. For total size and individual size difference constraints, we present a [Formula: see text]-approximation algorithm for maximizing a nonnegative k-submodular function, running in time [Formula: see text] at worst. Specially, if [Formula: see text] is multiple of [Formula: see text], the approximation ratio can reduce to [Formula: see text], running in time [Formula: see text] at worst. Besides, this algorithm can be applied to [Formula: see text]-bisubmodular achieving [Formula: see text]-approximation running in time [Formula: see text]. Furthermore, if [Formula: see text] is multiple of 2, the approximation ratio can reduce to [Formula: see text], running in time [Formula: see text] at worst. For individual size constraint, there is a [Formula: see text]-approximation algorithm for maximizing a nonnegative [Formula: see text]-submodular function and an nonnegative [Formula: see text]-bisubmodular function, running in time [Formula: see text] and [Formula: see text] respectively, at worst.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3