Detecting the multi-period performance and efficiency changes of systems with undesirable outputs

Author:

Noveiri Monireh Jahani Sayyad1,Kordrostami Sohrab1,Amirteimoori Alireza2

Affiliation:

1. Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2. Department of Applied Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

Data envelopment analysis (DEA) is a technique to evaluate the relative efficiency of a set of decision making units (DMUs) which is applicable in different systems such as engineering, ecology, and so forth. In real-world situations, there are instances in which production processes of systems must be analyzed in multiple periods while desirable and undesirable outputs are present; therefore, in the current paper, a DEA-based procedure is suggested to estimate the performance of systems with desirable and undesirable outputs over several periods of time. Actually, the overall and period efficiencies of DMUs in the presence of undesirable outputs are calculated by using the DEA technique. Different aspects of disposability, i.e., strong and weak, are considered for undesirable outputs. Moreover, the overall efficiency is indicated as a weighted average of the efficiencies of periods. Efficiency changes between two periods are also estimated. The proposed approach has been tested by a numerical example and applied to evaluate the efficiency of commercial transport industry in 17 countries. The findings show that efficiency scores and their changes between periods might alter by incorporating undesirable outputs into the multi-period system under evaluation; consequently, the proposed approach obtains more rational and accurate results when undesirable outputs are present.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3