Vertex arboricity of graphs embedded in a surface of non-negative Euler characteristic

Author:

Teng Wenshun1,Wang Huijuan1

Affiliation:

1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, P. R. China

Abstract

The vertex arboricity [Formula: see text] of a graph [Formula: see text] is the minimum number of colors the vertices of the graph [Formula: see text] can be colored so that every color class induces an acyclic subgraph of [Formula: see text]. There are many results on the vertex arboricity of planar graphs. In this paper, we replace planar graphs with graphs which can be embedded in a surface [Formula: see text] of Euler characteristic [Formula: see text]. We prove that for the graph [Formula: see text] which can be embedded in a surface [Formula: see text] of Euler characteristic [Formula: see text] if no [Formula: see text]-cycle intersects a [Formula: see text]-cycle, or no [Formula: see text]-cycle intersects a [Formula: see text]-cycle, then [Formula: see text] in addition to the [Formula: see text]-regular quadrilateral mesh.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3