Eigenvalues of the generalized subdivision graph with applications to graph energy

Author:

Shamsher Tahir1ORCID,Pirzada S.2ORCID

Affiliation:

1. School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India

2. Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India

Abstract

For a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], let [Formula: see text] denotes the subdivision graph of [Formula: see text] with vertex set [Formula: see text]. In [Formula: see text], replace each vertex [Formula: see text], [Formula: see text], by [Formula: see text] vertices and join every vertex to the neighbors of [Formula: see text]. Then in the resulting graph, replace each vertex [Formula: see text], [Formula: see text], by [Formula: see text] vertices and join every vertex to the neighbors of [Formula: see text]. The resulting graph is denoted by [Formula: see text]. This generalizes the construction of the subdivision graph [Formula: see text] to [Formula: see text] of a graph [Formula: see text]. In this paper, we provide the complete information about the spectrum of [Formula: see text] using the spectrum of [Formula: see text]. Further, we determine the Laplacian spectrum of [Formula: see text] using the Laplacian spectrum of [Formula: see text], when [Formula: see text] is a regular graph. Also, we find the Laplacian spectrum of [Formula: see text] using the Laplacian spectrum of [Formula: see text] when [Formula: see text]. The energy of a graph [Formula: see text] is defined as the sum of the absolute values of the eigenvalues of [Formula: see text]. The incidence energy of a graph [Formula: see text] is defined as the sum of the square roots of the signless Laplacian eigenvalues of [Formula: see text]. Finally, as an application, we show that the energy of the graph [Formula: see text] is completely determined by the incidence energy of the graph [Formula: see text].

Funder

SERB DST India

Indian Institute of Technology Bhubaneswar, Bhubaneswar, India

National Board for Higher Mathematics (NBHM) research Project

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3