Reorganizing topologies of Steiner trees to accelerate their eliminations

Author:

Grodet Aymeric1,Tsuchiya Takuya2

Affiliation:

1. Lifematics Inc., Sanshin Hatchobori Bldg. 5F, 2-25-3, Hatchobori, Chuo-ku, Tokyo, Japan

2. Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama, Japan

Abstract

We describe a technique to reorganize topologies of Steiner trees by exchanging neighbors of adjacent Steiner points. We explain how to use the systematic way of building trees, and therefore topologies, to find the correct topology after nodes have been exchanged. Topology reorganizations can be inserted into the enumeration scheme commonly used by exact algorithms for the Euclidean Steiner tree problem in [Formula: see text]-space, providing a method of improvement different than the usual approaches. As an example, we show how topology reorganizations can be used to dynamically change the exploration of the usual branch-and-bound tree when two Steiner points collide during the optimization process. We also turn our attention to the erroneous use of a pre-optimization lower bound in the original algorithm and give an example to confirm its usage is incorrect. In order to provide numerical results on correct solutions, we use planar equilateral points to quickly compute this lower bound, even in dimensions higher than two. Finally, we describe planar twin trees, identical trees yielded by different topologies, whose generalization to higher dimensions could open a new way of building Steiner trees.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3