Inter-porphyrin coupling: how strong should it be for molecular electronics applications?

Author:

Reimers Jeffrey R.1,Hush Noel S.12,Crossley Maxwell J.1

Affiliation:

1. School of Chemistry, The University of Sydney, NSW 2006, Australia

2. School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia

Abstract

Porphyrins and phthalocyanines have now been assembled in a multitude of different architectures, each of which may be identified with a different scenario of the coupling acting between the porphyrins. The synthetic flexibility of these compounds makes possible the design of particular molecules for specific applications in molecular electronics, both in naturally occurring and synthetic devices. Here, we form an overview of these features and focus on the coupling strength, considering what values are appropriate for different molecular electronics applications. In particular, we focus on model compounds that have been prepared as mimics of naturally occurring photosynthetic functional units, oligoporphyrins molecular wires, and stacked systems in which small changes in geometry can affect significant changes in the inter-porphyrin coupling and hence produce dramatic changes in device properties.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3