Effects of diverse acid catalysts on the reaction course in the two-step one-flask synthesis of meso-tetraphenylporphyrin

Author:

Geier G. Richard1,Lindsey Jonathan S.1

Affiliation:

1. Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA

Abstract

A set of 45 acids or acid combinations was examined in the condensation of pyrrole + benzaldehyde (10 mM each in CH 2 Cl 2) leading to meso-tetraphenylporphyrin (TPP). Initial screening experiments identified suitable acid catalysts and the optimal concentration (in terms of TPP formation) for each acid. Subsequent experiments followed the time course of reactions using the best conditions identified in the screening experiments. The reaction course was followed by monitoring reactions from 1 min to 24 h for the yield of TPP (by UV-vis and HPLC), the yields of N-confused tetraphenylporphyrin and tetraphenylsapphyrin (by HPLC), the quantity of unreacted benzaldehyde (by TLC), and the oligomer composition (by laser desorption mass spectrometry). Diverse acids (Brønsted or Lewis; soluble or insoluble) were found to provide yields of TPP ranging up to ~50%. Only 10 acids gave no TPP. In addition, N-confused tetraphenylporphyrin was found to be a ubiquitous byproduct, whereas tetraphenylsapphyrin was not widely observed. MgBr 2-etherate and CuCl 2 each catalyzed porphyrinogen formation and resulted in porphyrin metalation following oxidation and neutralization of the reaction mixture, thereby providing direct, one-flask syntheses of magnesium and copper porphyrins. Observations concerning the reaction course obtained from prior studies of TFA or BF 3-etherate catalysis have been found to be quite general across a broad range of acid catalysts. Collectively, these results show that many acids have potential utility in porphyrin syntheses.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3