Affiliation:
1. Molecular and Nanomaterials Electrochemistry Laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
Abstract
The fabrication, characterization and application of edge-plane pyrolytic graphite electrode modified with acid-functionalized single-walled carbon nanotubes, nanostructured cobalt phthalocyanine and a mixture of both, towards epinephrine detection and analysis are described. The morphological features of the films were evaluated using atomic force microscopy (AFM). Electrochemistry of these electrodes in [ Fe ( CN )6]3−/4− using cyclic voltammetry and electrochemical impedance spectroscopy showed higher peak current responses with accompanying low electron-transfer resistances in comparison to the bare electrode. The edge-plane pyrolytic graphite-single-walled carbon nanotubes-nanostructured cobalt phthalocyanine electrode exhibited good electrocatalytic activity towards epinephrine oxidation with enhanced peak currents. Analytical studies using edge-plane pyrolytic graphite-single-walled carbon nanotubes-nanostructured cobalt phthalocyanine electrode proved that the electrode is suitable for sensitivity determination of epinephrine in pH 5 conditions judging from the good sensitivity (8.71 ± 0.31 A.M−1), and limit of detection (0.04 µM) and quantification (1.31 µM) obtained. Determination of EP in the absence and presence of ascorbic acid in phosphate buffer pH 5 conditions was carried out and it was established that the presence of AA did not interfere in EP analysis. Rotating disk electrode experiments proved that the catalytic rate constant was 2.28 × 1016 mM−1.s−1.
Publisher
World Scientific Pub Co Pte Lt
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献