Comparison of chemical properties of iron, cobalt, and nickel porphyrins, corrins, and hydrocorphins

Author:

Jensen Kasper P.1,Ryde Ulf1

Affiliation:

1. Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, S-22100 Lund, Sweden

Abstract

Density functional calculations have been used to compare the geometric, electronic, and functional properties of the three important tetrapyrrole systems in biology, heme, coenzyme B 12, and coenzyme F430, formed from iron porphyrin ( Por ), cobalt corrin ( Cor ), and nickel hydrocorphin ( Hcor ). The results show that the flexibility of the ring systems follows the trend Hcor > Cor > Por and that the size of the central cavity follows the trend Cor < Por < Hcor . Therefore, low-spin Co I, Co II, and Co III fit well into the Cor ring, whereas Por seems to be more ideal for the higher spin states of iron, and the cavity in Hcor is tailored for the larger Ni ion, especially in the high-spin Ni II state. This is confirmed by the thermodynamic stabilities of the various combinations of metals and ring systems. Reduction potentials indicate that the +I and +III states are less stable for Ni than for the other metal ions. Moreover, Ni – C bonds are appreciably less stable than Co - C bonds. However, it is still possible that a Ni – CH 3 bond is formed in F 430 by a heterolytic methyl transfer reaction, provided that the donor is appropriate, e.g. if coenzyme M is protonated. This can be facilitated by the adjacent SO 3 group in this coenzyme and by the axial glutamine ligand, which stabilizes the Ni III state. Our results also show that a Ni III– CH 3 complex is readily hydrolysed to form a methane molecule and that the Ni III hydrolysis product can oxidize coenzyme B and M to a heterodisulphide in the reaction mechanism of methyl coenzyme M reductase.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3