Near-infrared sensitization solar cell with the electrode of aluminium phthalocyanine adsorbed on nanocrystalline titanium dioxide film

Author:

Komori Tasuku1,Amao Yutaka1

Affiliation:

1. Department of Applied Chemistry, Oita University, Dannoharu 700, Oita 870-1192, Japan

Abstract

The dye-sensitized solar cell using visible and near-infrared sensitization of nanocrystalline TiO 2 films by aluminium phthalocyanine, aluminium 2,9,16,23-tetraphenoxy-29H, 31H-phthalocyanine hydroxide (AlTPPc), was developed and its photoelectrochemical properties were investigated. The short-circuit photocurrent (ISC) was 0.026 mA cm-2, the open-circuit photovoltage ( V OC) was 186 mV, and the fill factor (FF) of solar cell using AlTPPc adsorbed on nanocrystalline TiO 2 film electrode was estimated to be 40.4%, respectively. By using AlTPPc adsorbed on nanocrystalline TiO 2 film electrode, photovoltage and photocurrent were higher compared with that of only nanocrystalline TiO 2 film electrode and were maintained under near-infrared irradiation. Thus, the solar cell using the near-infrared sensitization by AlTPPc adsorbed on nanocrystalline TiO 2 film electrode was developed.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3