Synthesis, characterization, electrical and dielectric permittivity measurements of 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyanines

Author:

Salan Ümit1,Altindal Ahmet2,Bulut Mustafa1,Bekaroğlu Özer1

Affiliation:

1. Department of Chemistry, Marmara University, 34722 Göztepe-İstanbul, Turkey

2. Department of Physics, Marmara University, 34722 Göztepe-İstanbul, Turkey

Abstract

2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyanines were synthesized from 4-(4-amino-3-nitrophenoxy)phthalonitrile which was obtained from 4-nitro-1,2-dicyanobenzene and 4-amino-3-nitrophenol. 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyanine and 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyaninatocobalt(II) were synthesized in a one-step condensation reaction of ferrocenylaldehyde with 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyanine and 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyaninatocobalt(II), respectively. The novel compounds were characterized by elemental analysis, Inductively Coupled Plasma (ICP-MS), UV-vis, IR and 1 H NMR spectroscopy. The effects of temperature and frequency on the conduction properties (a.c. and d.c.) and the dielectric constant were studied on pellet samples of 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyanine, 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyanine, 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyaninatocobalt(II) and 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyaninatocobalt(II), with evaporated, ohmic gold electrodes in the frequency range 40-105 Hz. and within the temperature range 290-400 K. Unlike many metallophthalocyanines, a variable-range hopping model is found to most appropriately fit the experimental conductivity data of 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyanine and 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyaninatocobalt(II), while for 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyanine and 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyaninatocobalt(II), thermally activated conduction with single activation energy is valid. Frequency and temperature dependence of the a.c conductivity were analyzed in terms of existing theory for 2,9,16,23-tetra-(4-amino-3-nitrophenoxy)phthalocyanine, 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyanine, 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyaninatocobalt(II) and 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyaninatocobalt(II). It was found that the a.c. conductivity of the compounds depends on the frequency, obeying the empirical formula, σ ac = A ( T )ωs. The model parameters calculated are reasonable and consistent with the prediction of the correlated barrier hopping model for 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyanine and 2,9,16,23-tetra(4-ferrocenylimino-3-nitrophenoxy)phthalocyaninatocobalt(II) and the quantum mechanical tunneling model for 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyanine and 2,9,16,23-tetra(4-amino-3-nitrophenoxy)phthalocyaninatocobalt(II). The dielectric constant of the compounds increased with temperature and decreased with frequency in the investigated range.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3