STOCK MARKET PREDICTION IN BRICS COUNTRIES USING LINEAR REGRESSION AND ARTIFICIAL NEURAL NETWORK HYBRID MODELS

Author:

ATAMAN GÖRKEM1,KAHRAMAN SERPIL2

Affiliation:

1. Department of Business Administration, Yasar University, İzmir, Turkey

2. Department of Economics, Yasar University, İzmir, Turkey

Abstract

The BRICS (Brazil, Russia, India, China and South Africa) acronym was created by the International Monetary Foundation (IMF)–Group of Seven (G7) to represent the bloc of developing economies which crucially impact on the global economy by their potential economic growth. Most of the foreign direct investment are considering the stock markets of BRICS as the most attractive destination for foreign portfolio investment. This study aims to identify the relationship between macroeconomic variables and the stock market index values of BRICS and generate accurate predictions for index values by performing linear regression and artificial neural network hybrid models. Monthly data from January 2003 to December 2019 are used for the empirical study. The results indicate that a strong correlation exists between the stock market and macroeconomic variables in BRICS over time. The hybrid model is observed very accurate for index value prediction where the mean absolute percentage error (MAPE) value is 0.714% for the whole data set covering all BRICS countries data during the study period. Additionally, MAPE values for each of the BRICS countries are, respectively, obtained as 0.083%, 2.316%, 0.116%, 0.962% and 0.092%. Thus, the main findings of this study show that while neural network-integrated models have high performances for volatile stock market prediction, macroeconomic stabilization should be the priority of monetary policy to prevent the high volatility of stock markets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Economics and Econometrics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3