SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data

Author:

Wang Huiqing1,Lian Yuanyuan1ORCID,Li Chun1,Ma Yue1,Yan Zhiliang1,Dong Chunlin2

Affiliation:

1. College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, China

2. Dryland Agriculture Research Center, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China

Abstract

As a tool of interpreting and analyzing genetic data, gene regulatory network (GRN) could reveal regulatory relationships between genes, proteins, and small molecules, as well as understand physiological activities and functions within biological cells, interact in pathways, and how to make changes in the organism. Traditional GRN research focuses on the analysis of the regulatory relationships through the average of cellular gene expressions. These methods are difficult to identify the cell heterogeneity of gene expression. Existing methods for inferring GRN using single-cell transcriptional data lack expression information when genes reach steady state, and the high dimensionality of single-cell data leads to high temporal and spatial complexity of the algorithm. In order to solve the problem in traditional GRN inference methods, including the lack of cellular heterogeneity information, single-cell data complexity and lack of steady-state information, we propose a method for GRN inference using single-cell transcription and gene knockout data, called SINgle-cell transcription data-KNOckout data (SIN-KNO), which focuses on combining dynamic and steady-state information of regulatory relationship contained in gene expression. Capturing cell heterogeneity information could help understand the gene expression difference in different cells. So, we could observe gene expression changes more accurately. Gene knockout data could observe the gene expression levels at steady-state of all other genes when one gene is knockout. Classifying the genes before analyzing the single-cell data could determine a large number of non-existent regulation, greatly reducing the number of regulation required for inference. In order to show the efficiency, the proposed method has been compared with several typical methods in this area including GENIE3, JUMP3, and SINCERITIES. The results of the evaluation indicate that the proposed method can analyze the diversified information contained in the two types of data, establish a more accurate gene regulation network, and improve the computational efficiency. The method provides a new thinking for dealing with large datasets and high computational complexity of single-cell data in the GRN inference.

Funder

the National key research and development plan of China

the Scientific and Technological Project of Shanxi Province,China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3