Comparison of different approaches for identifying subnetworks in metabolic networks

Author:

Rezvan Abolfazl1,Eslahchi Changiz1

Affiliation:

1. Department of Computer Science, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

Abstract

A metabolic network model provides a computational framework for studying the metabolism of a cell at the system level. The organization of metabolic networks has been investigated in different studies. One of the organization aspects considered in these studies is the decomposition of a metabolic network. The decompositions produced by different methods are very different and there is no comprehensive evaluation framework to compare the results with each other. In this study, these methods are reviewed and compared in the first place. Then they are applied to six different metabolic network models and the results are evaluated and compared based on two existing and two newly proposed criteria. Results show that no single method can beat others in all criteria but it seems that the methods introduced by Guimera and Amaral and Verwoerd do better on among metabolite-based methods and the method introduced by Sridharan et al. does better among reaction-based ones. Also, the methods are applied to several artificial networks, each constructed from merging a few KEGG pathways. Then, their capability to recover those pathways are compared. Results show that among metabolite-based methods, the method of Guimera and Amaral does better again, however, no notable difference between the performances of reaction-based methods was detected.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3