CANCER CLASSIFICATION FROM THE GENE EXPRESSION PROFILES BY DISCRIMINANT KERNEL-PLS

Author:

TANG KAI-LIN1,YAO WEI-JIA2,LI TONG-HUA2,LI YI-XUE13,CAO ZHI-WEI14

Affiliation:

1. Shanghai Center for Bioinformation and Technology, 100 Qinzhou Road, Shanghai 200235, P. R. China

2. Department of Chemistry, Tongji University, Shanghai 200092, P. R. China

3. Bioinformatics Center, Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, P. R. China

4. College of Life Science and Biotechnology, Tongji University, Shanghai 200092, P. R. China

Abstract

Cancer diagnosis depending on microarray technology has drawn more and more attention in the past few years. Accurate and fast diagnosis results make gene expression profiling produced from microarray widely used by a large range of researchers. Much research work highlights the importance of gene selection and gains good results. However, the minimum sets of genes derived from different methods are seldom overlapping and often inconsistent even for the same set of data, partially because of the complexity of cancer disease. In this paper, cancer classification was attempted in an alternative way of the whole gene expression profile for all samples instead of partial gene sets. Here, the three common sets of data were tested by NIPALS-KPLS method for acute leukemia, prostate cancer and lung cancer respectively. Compared to other conventional methods, the results showed wide improvement in classification accuracy. This paper indicates that sample profile of gene expression may be explored as a better indicator for cancer classification, which deserves further investigation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3