The search of CAR, AhR, ESRs binding sites in promoters of intronic and intergenic microRNAs

Author:

Ovchinnikov Vladimir Y.1ORCID,Antonets Denis V.23,Gulyaeva Lyudmila F.45

Affiliation:

1. Laboratory of Molecular Mechanisms of Pathological Processes, The Federal Research Center Institute of Cytology and Genetics The Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation

2. Laboratory of Complex Systems Modeling, A.P. Ershov Institute of Informatics Systems, Prospekt Lavrentyeva 6, Novosibirsk 630090, Russian Federation

3. AcademGene LLC, Prospekt Lavrentyeva 6, Novosibirsk 630090, Russian Federation

4. Laboratory of Molecular Mechanisms of Carcinogenesis, Research Institute of Molecular Biology and Biophysics, Timakov St., 2/12, Novosibirsk 630117, Russian Federation

5. Natural Science Department, Novosibirsk State University, Pirogova St., 2, Novosibirsk 630090, Russian Federation

Abstract

MicroRNAs (miRNAs) play important roles in the regulation of gene expression at the post-transcriptional level. Many exogenous compounds or xenobiotics may affect microRNA expression. It is a well-established fact that xenobiotics with planar structure like TCDD, benzo(a)pyrene (BP) can bind aryl hydrocarbon receptor (AhR) followed by its nuclear translocation and transcriptional activation of target genes. Another chemically diverse group of xenobiotics including phenobarbital, DDT, can activate the nuclear receptor CAR and in some cases estrogen receptors ESR1 and ESR2. We hypothesized that such chemicals can affect miRNA expression through the activation of AHR, CAR, and ESRs. To prove this statement, we used in silico methods to find DRE, PBEM, ERE potential binding sites for these receptors, respectively. We have predicted AhR, CAR, and ESRs binding sites in 224 rat, 201 mouse, and 232 human promoters of miRNA-coding genes. In addition, we have identified a number of miRNAs with predicted AhR, CAR, and ESRs binding sites that are known as oncogenes and as tumor suppressors. Our results, obtained in silico, open a new strategy for ongoing experimental studies and will contribute to further investigation of epigenetic mechanisms of carcinogenesis.

Funder

Russian Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3