Training host-pathogen protein–protein interaction predictors

Author:

Basit Abdul Hannan12,Abbasi Wajid Arshad1,Asif Amina1,Gull Sadaf1,Minhas Fayyaz Ul Amir Afsar1ORCID

Affiliation:

1. Department of Computer and Information Sciences, Biomedical Informatics Research Laboratory, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 44000, Pakistan

2. Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 44000, Pakistan

Abstract

Detection of protein–protein interactions (PPIs) plays a vital role in molecular biology. Particularly, pathogenic infections are caused by interactions of host and pathogen proteins. It is important to identify host–pathogen interactions (HPIs) to discover new drugs to counter infectious diseases. Conventional wet lab PPI detection techniques have limitations in terms of cost and large-scale application. Hence, computational approaches are developed to predict PPIs. This study aims to develop machine learning models to predict inter-species PPIs with a special interest in HPIs. Specifically, we focus on seeking answers to three questions that arise while developing an HPI predictor: (1) How should negative training examples be selected? (2) Does assigning sample weights to individual negative examples based on their similarity to positive examples improve generalization performance? and, (3) What should be the size of negative samples as compared to the positive samples during training and evaluation? We compare two available methods for negative sampling: random versus DeNovo sampling and our experiments show that DeNovo sampling offers better accuracy. However, our experiments also show that generalization performance can be improved further by using a soft DeNovo approach that assigns sample weights to negative examples inversely proportional to their similarity to known positive examples during training. Based on our findings, we have also developed an HPI predictor called HOPITOR (Host-Pathogen Interaction Predictor) that can predict interactions between human and viral proteins. The HOPITOR web server can be accessed at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#HoPItor .

Funder

Higher Education Commission of Pakistan

Information Technology Endowment Fund PIEAS

Higher Education Commission, Pakistan

Pakistan Institute of Engineering and Applied Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3