PSSP: Protein splice site prediction algorithm using Bayesian approach

Author:

Bahrami Abolfazl1ORCID,Najafi Ali2,Hashemi Mohammadreza1,Miraie-Ashtiani Seyed Reza1

Affiliation:

1. Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran

2. Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

This study aimed to introduce an algorithm and identify intein motif and blocks involved in protein splicing, and explore the underlying methods in the development of detection of protein motifs. Inteins are mobile protein splicing elements capable of self-splicing post-translationally. They exist in viruses and bacteriophage, notwithstanding this broad phylogenetic distribution, all inteins apportion common structural features. A method was developed to predict intein in a raw sequence, using a ranking and scoring scheme based on amino acid [Formula: see text] value tables. This method aided in the identification and assessment of patterns characterizing the intein sequences. New intein conserved properties are revealed and the known ones are described and localized. We have computed the [Formula: see text] value of each amino acid at block A positions [Formula: see text] to [Formula: see text], block B positions [Formula: see text] to [Formula: see text] and block G positions [Formula: see text]7 to [Formula: see text] for the three categories. The consensus amino acids thus found are listed at the end of each row. We gave statistics for the distance between the blocks, block A to B, block B to F, and block F to G with the average being 66.1, 294, and 10.2 amino acids, respectively. The actual blocks A, B, and G of the one intein found in vacuolar membrane ATPase subunit, a precursor protein, are ranked 1. The results indicate all of the block sequences that are found in nine proteins are ranked at top of the list. The intein sequence is used to search the databases for intein-like proteins. Understanding the functional, structural, and dynamical aspects of inteins is important for intein engineering and the betterment of intein database.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3