Affiliation:
1. School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
Abstract
Despite an exponential increase in publications on clinical prediction models over recent years, the number of models deployed in clinical practice remains fairly limited. In this paper, we identify common obstacles that impede effective deployment of prediction models in healthcare, and investigate their underlying causes. We observe a key underlying cause behind most obstacles — the improper development and evaluation of prediction models. Inherent heterogeneities in clinical data complicate the development and evaluation of clinical prediction models. Many of these heterogeneities in clinical data are unreported because they are deemed to be irrelevant, or due to privacy concerns. We provide real-life examples where failure to handle heterogeneities in clinical data, or sources of biases, led to the development of erroneous models. The purpose of this paper is to familiarize modeling practitioners with common sources of biases and heterogeneities in clinical data, both of which have to be dealt with to ensure proper development and evaluation of clinical prediction models. Proper model development and evaluation, together with complete and thorough reporting, are important prerequisites for a prediction model to be effectively deployed in healthcare.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献