A TRANSCRIPTOME ANALYSIS BY LASSO PENALIZED COX REGRESSION FOR PANCREATIC CANCER SURVIVAL

Author:

WU TONG TONG1,GONG HAIJUN2,CLARKE EDMUND M.2

Affiliation:

1. Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, USA

2. Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

Pancreatic cancer is the fourth leading cause of cancer deaths in the United States with five-year survival rates less than 5% due to rare detection in early stages. Identification of genes that are directly correlated to pancreatic cancer survival is crucial for pancreatic cancer diagnostics and treatment. However, no existing GWAS or transcriptome studies are available for addressing this problem. We apply lasso penalized Cox regression to a transcriptome study to identify genes that are directly related to pancreatic cancer survival. This method is capable of handling the right censoring effect of survival times and the ultrahigh dimensionality of genetic data. A cyclic coordinate descent algorithm is employed to rapidly select the most relevant genes and eliminate the irrelevant ones. Twelve genes have been identified and verified to be directly correlated to pancreatic cancer survival time and can be used for the prediction of future patient's survival.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3