Affiliation:
1. Department of Computer Science, Xidian University, Xi'an, 710071, Shaanxi, P. R. China
Abstract
The planted motif search problem arises from locating the transcription factor binding sites (TFBSs) which are crucial for understanding the gene regulatory relationship. Many attempts in using expectation maximization for TFBSs discovery are successful in past. However, identifying highly degenerate motifs and reducing the effect of local optima are still an arduous task. To alleviate the vulnerability of EM to local optima trapping, we present a heuristic cluster-based EM algorithm, CEM, which refines the cluster subsets in EM method to explore the best local optimal solution. Based on experiments using both synthetic and real datasets, our algorithm demonstrates significant improvements in identifying the motif instances and performs better than current widely used algorithms. CEM is a novel planted motif finding algorithm, which is able to solve the challenging instances and easy to parallel since the process of solving each cluster subset is independent.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献